地下凍結地帯におけるアルファルファの作型 に関する考察

第7報 アルファルファ 堆肥表層施用時における石灰施用量の検討

井芹靖彦 (宗谷北部地区農改) 草刈泰弘 (十勝北部地区農改)

Studies on cropping type of alfalfa in soil freezing area 7.

Yasuhiko Iseri (Souyahokubu Ag. Extension Office – Toyotomi)

Yasuhiro Kusakari (Tokatihokubu Ag. Extension Office – Otohuke)

緒 言

アルファルファ(以下AL)はイネ科草に比較しカルシウム(以下Ca)含有量は高く、石灰植物として位置づけられている。

一方、地下凍結地帯におけるAL 栽培は堆肥の表層大量施用により生産性は助長される。

このような条件下における炭カル施用量について検討した。

材料及び方法

1) 設置場所:音更町農業試験研究センター

2) 土 性:黑色火山性土

3) 区 制:1区6 m² 反復なし

4) 供試品種:マヤ

5) 播種量: 1kg/10a

6) 堆肥施用量: 10t/10a

7) 供試堆肥の成分(乾物中%)

乾物率	N	P2O5	MgO	CaO	K ₂ O
34. 3	2. 06	1.81	1. 11	6. 21	2. 04

8) 燐酸資材: BM熔燐 100 kg/10 a

9) 耕種概況: a 播種様式、散播、 b 播種方式、 整地一覆土—鎮圧、 c 播種期、 6月 4日

d 収穫期

新播年 1番 8/9 2番 10/11 2年目 1番 6/20 2番 7/30 3番 9/13

e 施肥量 (10 a 当りkg)

新播年

造	成	時		1番刈後	2番刈後
BM熔燐	第1燐安	硫	加	624	624
52	18		16	30	20

要	素	量(10a	当りkg)
N	P ₂ O ₅	K ₂ O	MgO
 5. 0	26	20	8. 7

2年目

早 春	1 番刈後	2番刈後624	3 番刈後
S 550	624		624
50 kg	30	20	20

	要	素量	(kg)
N	P2O5	K ₂ O	MgO
6.7	15. 9	26.8	5. 3

結 果

1) 乾物収量成績

a. 新播年収量:石灰施用量による収量差は認められなかった。区間による若干の差は2番草における黒葉枯病による落葉、倒伏によるものと考えられる(図1)。

b. 2年目収量:新播年同様処理間において収量差は認められなかった(図1)。

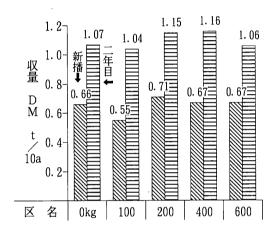


図1. AL石灰施用水準別年次別収量 1991

2) 石灰施用水準とAL番草別ミネラル成分値

a. 新播年:1番草では石灰施用水準が高まるにつれ、窒素(N)、石灰(Ca)は上昇する傾向がみられた。燐(P)では低施用区に対し高施用区でやや高くなる傾向がみられた。マグネシウム (Mg)は明瞭な関係はみられなかった。(図 2)

2番草では各成分ともバラツキ、一定傾向はみられなかった(図 2)。

b. 2年目:窒素(N):1番草における処理に よる差はみられなかった。2番草では高施用区 でやや低く、3番草ではバラツキがみられた。 (図3)

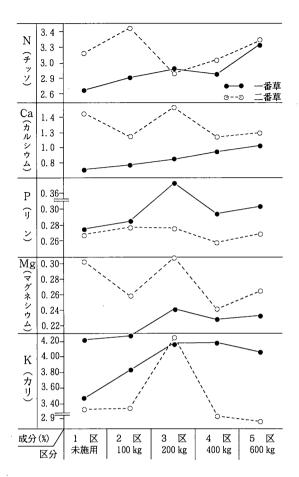


図 2. AL石灰施用水準とミネラル成分との関係 (新播年 1990)

石灰(Ca):含有量は1~2番草では石灰施用水 準が高まるにつれ、上昇する傾向がみられた。 3番草は明瞭でなかった。

燐(P): 1番草では処理による差は明瞭でなかった。2番草、3番草では200kg 施用区をピークとする関係がみられた。

マグネシウム(Mg): 1 番草ではバラツキ不明であるが、2番3番草では石灰施用水準が高まると Mg 含有量は低下する傾向がみられた。

加里(K):各番草とも石灰施用水準が高まるにつれ、K含有量は低下する傾向がみられた。

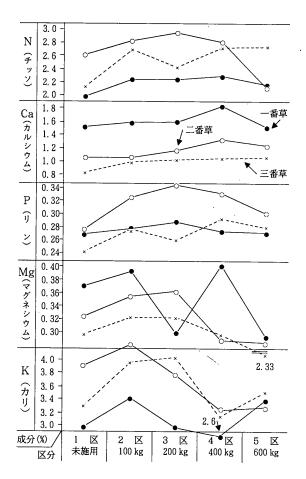


図3. AL石灰活用水準とミネラル成分との関係 (2年目草1991 十勝北部土壌飼料診断室)

3) 石灰施用水準と土壌中養分との関係

a. 新播年における関係 (表1)

表 1. AL石灰用量、新播年、炭カル、堆肥施用後 土壌養分経時変化(1990)

工場食分柱時後化(1990)								
分析	項目		施原	石灰· 堆肥施用後日数				
析項	(プル	取月日	韶志	33 _日	65	94	129	179
<u>目</u>	区名		5/2	6/4	7/6	8/4	9/.8	10/28
	1区 炭カル	0 kg	5. 5	5. 7	5. 5	5.8	6.0	5. 8
Р	2区 炭カル	100kg	5. 7	5. 8	5. 8	6.0	6.0	6.0
	3区 炭カル	200 kg	5. 5	5. 9	5. 9	6. 1	6. 1	6.2
Η		400kg	5. 5	5. 9	5. 7	6.3	6. 2	6. 2
		600 kg	5. 5	6. 2	6. 0	6.3	6. 3	6.2
リン	炭ル	0kg	30. 0	51.4	51.0	73. 4	72. 4	66. 2
酸	2区 炭カル	100 kg	29.4	55. 2	55.4	48.8	68.6	60. 2
プレ		200 kg	39.4	77.8	57.0	73. 2	105. 4	69. 2
イ No. 2)	4区 炭カル	400 kg	36.4	57. 4	73.4	91.4	83. 2	67. 4
ك	5区 炭カル	600kg	48.0	108.6	96.6	106.8	132.4	91.0
C	1区 炭カル	Okg	37	_	_			44
CEC(塩基置換容量	2区 炭カル	100 kg	39		_	_	_	44
基置	3区 炭カル	200 kg	40	<u>-</u>	_	_	_	45
換容	4区 炭カル	400 kg	41		_	_	_	42
量		600 kg	37		_	-		41
CaO	1区 炭カル	0 kg	423	521	444	513	517	550
趸	2区 炭カル	100 kg	481	612	595	583	585	679
灰	3区 炭カル	200 kg	472	695	623	710	755	701
mg	4区 炭カル	400kg	487	542	732	814	768	873
100g	5区 炭カル	600 kg	384	899	670	735	812	743
MgO	1区 炭カル	0kg	29	58	46	48	59	71
(苦土)	2区 炭カル	100 kg	46	73	74	64	75	96
土	3区 炭カル	200 kg	38	84	68	82	88	97
mg		400 kg	38	54	67	84	81	92
100g	10000	600 kg	41	94	67	75	81	84
K2O	1区 炭カル	0kg	24	81	65	54	51	41
ਹੈ	2区 炭カル	100kg	49	93	92	61	61	50
ŋ	3区 炭カル	200 kg	39	103	93	67	54	54
mg	4区 炭カル	400 kg	42	73	89	60	40	44
100g	5区 炭カル	600kg	61	128	104	78	64	45
			-	(-	上勝北	部十角	Sel 141 3/2	/派令/

表 2. A L 石灰用量 2 年草番草別収穫後土壌養分(1991)

i	2 千丰田丰州从侵区工场设力(1001)						
分		項目			取時期	0.474166	
分析項目	- ~ ·	採取月日	早春	1番刈後	2番刈後	3番刈後	
	区名 1区	石灰	4/18	6/24	8/1	9/28	
	_	0kg	5. 8	5. 7	5. 7	6.0	
Р	2 🗵	石灰 100kg	6.0	5. 8	5. 8	6.0	
•	3 ⊠	石灰 200kg	6. 1	5. 9	5.8	6. 1	
Н	4区	石灰 400kg	6.2	6.0	5. 9	6.3	
	5区	石灰 600kg	6.3	6. 1	6. 1	6.3	
IJ	1区	石灰 Okg	61	69	60	83	
酸	2区	石灰 100kg	71	80	70	73	
プレ	3区	石灰 200kg	76	95	89	90	
リン酸(プレイM2)	4区	石灰 400kg	70	67	68	71	
2	5区	石灰 600kg	142	126	134	113	
CEC	1区	石灰 Okg	· 40	_	_	37	
	2区	石灰 100kg	42	<u>.</u>	_	42	
(塩基置換容量)	3区	石灰 200kg	43	_	_	41	
	4区	石灰 400kg	43	_	_	38	
	5区	石灰 600kg	41	_	_	36	
CoO	1区	石灰 Okg	505	507	463	505	
CaO	2区	石灰 100kg	679	647	631	653	
(石灰)	3区	石灰 200kg	719	690	690	708	
mg	4区	石灰 400kg	842	809	836	784	
/ 100g	5区	石灰 600kg	777	843	859	921	
140	1区	石灰 Okg	59	61	57	57	
MgO ⊋	2区	石灰 100kg	75	77	71	81	
(苦土)	3区	石灰 200kg	88	71	79	81	
mg	4区	石灰 400kg	72	70	75	76	
/ 100g	5区	石灰 600kg	58	72	79	80	
17.00	1区	石灰 Okg	47	24	30	22	
K2O ∵	2区	石灰 100kg	60	35	42	38	
(カリ)	3 区	石灰 200kg	55	28	41	30	
mg	4 ⊠	石灰 400kg	47	25	40	27	
/ 100g	5区	石灰 600kg	57	34	39	35	
	1	000119		(十勝:	北部土壌飼	料診断室)	

a) 石灰施用量後30日程度でPH及び石灰(Ca) 養分値の上昇がみられ、石灰施用による効果が 認められた。

尚、堆肥施用量が 10t/10a と多量であったため他養分も全体に増加した。さらに堆肥中の石灰(CaO)含有量が 6.2% (DM中) と高かったため未施用区の石灰も高まった。

- b. 2年目における関係(表2)
- a) 石灰施用水準とPHとの関係:はどの土壌 採取時期にも見られるが、早春及び秋季に比較 し夏季で若干低下する傾向がみられた。
- b) 石灰施用水準と土壌中石灰: との関係は採取時期により若干のバラツキが見られるものの石灰施用量に対応した関係が見られた。
- c) 石灰施用水準と加里との関係:特に関係は 見られなかったが、特徴的な事は早春に比較し 一番刈り後の土壌中含有量が著しく低下する傾 向が見られた。

考 察

堆肥を大量に施用する条件下における石灰施 用水準とAL生産性との関係は、2 カ年間の結 果では不明瞭であった。特に堆肥中の Ca 含有 量が高いことなどの要件も重なり石灰施用の効 果があらわれずらかったと考えられる。

しかし、植物体中 Ca は上昇傾向が見られる 事などから土壌中 P H を 6.0 以上に保つための 石灰施用水準は200kg/10a 以上と考えられた。