超音波画像診断装置を用いたチーズ内部構造の非破壊的測定法

 窪田明日香・渡部 哲哉¹⁾・高橋 道春²⁾・高橋 雅信・平井 綱雄 北海道立根釧農業試験場、中標津町、086-1135
 ¹⁾ 北海道士幌高等学校、士幌町、080-1275
 ²⁾ 士幌町食品加工研修センター、士幌町、080-1275

Nondestructive Evaluation of the Internal Structure of Cheese by Diagnostic Ultrasound System

Asuka KUBOTA, Tetsuya WATANABE¹⁾, Michiharu TAKAHASHI²⁾, Masanobu TAKAHASHI, Tsunao HIRAI

Hokkaido Prefectural Konsen Agricultural Experiment Station, Nakashibetsu,Hokkaido 086-1135
¹⁾ Hokkaido Shihoro High School, Shihoro,Hokkaido 080-1275
²⁾ Shihoro Food Product Research Center, Shihoro, Hokkaido 080-1275

キーワード:超音波画像診断装置、ガスホール、超音波画像、スイスタイプチーズ Key words: Diagnostic ultrasound system, Gas hole, Ultrasonic image, Swiss-type cheese

要 約

数ヶ月間の熟成を必要とするナチュラルチーズの製 造において、その熟成過程でチーズの内部構造を非破 壊的に知ることは、品質の維持、製造工程の改善ある いは製造コストの縮減に寄与する。そこで、チーズの 内部に生じる空隙の存否を超音波画像診断装置によっ て判別し得るのか検討した。その結果、ガスホール、 メカニカルホールおよび超音波の出射方向に直交する 横のクラックについては、ほぼその存在を推定するこ とができた。しかし、超音波の出射方向と同方向に存 在する縦のクラックは、その画像がメカニカルホール 群と類似しており、存否の判断が困難であった。真空 包装用フィルムの画像への影響を検討すると、チーズ の表面に存在するフィルムに対応して水平方向の反射 像の厚さが増加した。フィルムの材質、構造および厚 さの違いによるチーズの内部画像への影響はほとんど 認められなかった。

硬質のスイスタイプチーズを製造し、熟成過程で生 じる空隙について経日的に画像で観察し、あわせて熟 成完了時のチーズ断面と比較した。熟成0日目では、 均質な内部構造を反映して超音波の特異的な反射像は 得られなかった。しかし、11日目ではガスホールに由 来する像が観察され、25日目にはその容積の増加が推 定された。また、このガスホール以外の部分で、18日 目にクラックと推定される像が観察され、25日目には 明確となった。

以上の結果から、超音波画像診断装置を用いること により、チーズの内部構造を非破壊的に知ることがで き、不良品の早期発見や製造工程の改善等に利用でき ることが示された。

Summary

The objective of this study was to evaluate the effectiveness of diagnostic ultrasound system in order to observe internal structure of cheese.

Firstly, ultrasonic images of Gouda-type and Swiss-type cheese were compared respectively to their sliced sections as to the presence of structural elements (gas holes, mechanical holes and cracks). In thickly rinded cheese or cheese which had vertically reflected cracks, ultrasonic images were not so distinct. But, in cheese which had gas holes, mechanical holes and horizontally reflected cracks, ultrasonic images were distinct and internal structural elements were positively identified. Secondly, the effects of vacuum package films of different material and thickness on ultrasonic image were investigated. Although the horizontal reflection image was enhanced as the thickness of film increased, differences in film material and thickness did not influence the image of internal structure. Lastly, The change of internal structure of Swisstype cheese during ripening process was observed by diagnostic ultrasound system. Gas holes were first detected on the 11th day, and their size gradually increased on the 18th and the 25th days. Cracks were noted on the 18th day and became more visible on the 25th day.

In conclusion, these results demonstrate that internal structure of cheese can be evaluated nondestructively by diagnostic ultrasound system, so that quality control will be improved by early detection and elimination of inferior quality cheese.

緒言

現在、世界で製造されているチーズの種類は、200種 類以上を数え、それぞれ伝統的な製造技術に基づいた 製品が造られ独自の食文化を形成している(齋藤ら、 2006)。わが国の国民一人当たりのチーズ年間消費量 は、1980年には600gであったが、現在では約2 kgにも 達し、これに対応して、種々のナチュラルチーズを製 造する小規模な工房が北海道を中心に増加している (藤野と坂本、2007)。しかし、長期間の熟成工程を必要とするナチュラルチーズの中には、熟成完了後の製品でガスホールの欠陥やメカニカルホールやクラックの発生により商品価値が低下するものが散見されている(中澤と細野、1998)。そこで、今回、超音波画像診断装置を用いて、チーズの内部構造を非破壊的に観察する方法について検討を行った。さらに、超音波画像診断装置を用いて熟成中のチーズ内部構造の経日的な変化についても観察した。

材料および方法

超音波画像診断装置によるチーズ内部構造観察法

装置の概要は、超音波を発生させ反射した超音波(エ コー)を受信するプローブ(探触子)と、受信データ を処理する部分、および画像表示のためのディスプレ イからなる。画像を得る原理は、プローブを対象物、 すなわちチーズに直接接触させて超音波を発生させ、 この音波がチーズ内部を進み、組織や構造の異なる空 隙などの部位に当たると反射し、この反射波をプロー ブで計測し、反射波が戻ってくるまでの時間から距離 を計算し、内部の様相を可視化するものである。今回、 用いた超音波画像診断装置は、汎用機器として市販さ れている装置(ProSound SSD-4000、アロカ株式会社) で、付属のT字7.5 MHzプローブ75 (ALOKA UST-556T-7.5)を用いて、波長5 MHz、コントラスト6、

	Table 1	A manufacturing	process of G	Gouda-type	cheese(Konser	n) and	Swiss- tv	pe cheese	Konsen.Shi	horo)
--	---------	-----------------	--------------	------------	---------------	--------	-----------	-----------	------------	-------

	Gouda-type cheese	Swiss-type cheese			
	Konsen	Konsen	Shihoro		
Milk (FAT%/PRO%)	3.4/3.2	3. 0/3. 2	3. 0/3. 2		
Pasteurization	75℃ • 15s	75℃ • 15s	63℃ • 30min		
Starter1)additive amount ₂)					
FLORA-DANICA 3)	1800ml	_	_		
O-starter 3)	—	900m1	1215m1		
ST-B01 3)	-	200m1	23m1		
LH-B02 3)	—	200ml	12. 5ml		
PS-1(Propionibacterium) 4)	—	0. lunit	0. 015unit		
Setting	32°C • 30min	32℃ • 30min	34℃ · 30min		
Rennet 5) additive amount 2)	19ml	19m1	15ml		
Curd size	10mm	$5\sim 10$ mm	15~20mm		
Addition of water	draining whey of 30% of the milk and addition of hot water		draining whey of 30% of the milk and addition of hot water		
Warming speed	0.3℃ ∕min	1℃ ∕min	0.6℃ ∕min		
Cooking	38℃ • 30min	52℃ • 30min	48℃ • 30min		
Vat press	30min	30min	20m i n		
Mold size	1kg	1kg	3kg		
Mold press	2h	16h	16h		
Salting	20% • 10h	20% • 6h	22% · 4h		
Dried	12°C•10d	12℃ • 10d	18℃ • 4d		
Vacuum packaging	· O	—	—		
Ripening					
Primary ripening	12℃ • 3mo	30℃ • 4wk	12℃。 2wk		
Secondary ripening	_	12℃・6~12mo	22℃ • 3wk		
Tertiary ripening	_		7.5℃ · 4~12mo		

1) A product made in Chr.Hansen's 2) Quantity of addition for raw materials milk 100L

3) Preparation of starter culture 4) Freeze-dried DVS culture 5) Calf rennet(NATURETM, Chr. Hansen's)

ゲイン75の条件で観察した。なお、要に応じて密着補 助剤(ECHO JELLY、アロカ株式会社)を使用した。 得られた超音波画像は観察後、電子ファイルおよび画 像コピー装置(ALOKA ECHO COPIER SSZ-309)に よる印字画像として保存した。

得られた画像の信頼性などを検討するために、要に 応じて撮像面に出来る限り一致する面でチーズを切断 して比較検討した。

供試チーズおよび調査項目

実験に供したチーズは4種で、当場で製造した1)1 kg玉の半硬質チーズ(ゴーダタイプチーズ)と2)1 kg玉のプロピオン酸菌を添加した硬質チーズ(スイス タイプチーズ)および3)北海道士幌高等学校におい て製造された3 kg玉のプロピオン酸菌添加の硬質 チーズである。各チーズの製造方法はTable1に示し た。なお、牧草サイレージ主体で飼養した農場の牛乳 からカードを製造し、12℃で2ヶ月間熟成したチーズ の一部にはガス膨張が認められ、香気分析(方法:固 相マイクロ抽出/GC法)により多量の酪酸が検出され たものがあり、チーズ内部に多くのガスホールを有す るチーズとして、今回の実験に供し、これを4)酪酸 発酵チーズとした。

真空包装用フィルムの材質・構造・厚さの違いが画 像に及ぼす影響については、ガスホールの形成が確認 されたゴーダタイプチーズを用いて検討した。供試し た真空包装用フィルムは、高密度ポリエチレン樹脂(12 μm)、ポリ塩化ビニリデン樹脂(20μm)、低密度ポリ エチレン樹脂(30μm)、低密度ポリエチレン樹脂層+ ナイロン樹脂層(70μm)、ナイロンポリ樹脂層(3 層)+ナイロン樹脂層(2層)(80μm)の5種類であ る。なお、画像の観察は、プローブと真空包装用フィ ルムおよび真空包装用フィルムとチーズの間には密着 補助剤を塗り行った。

スイスタイプチーズ(1kg玉)の製造中に形成され るガスホールについては、乾燥5日目、高温熟成0日 目、11日目、18日目、25日目、低温熟成19日目(計44 日目)、28日目(計53日目)に超音波画像診断装置で内 部構造を観察した。

結果と考察

チーズ内部構造の超音波画像

超音波画像診断装置から得られる画像(超音波画像) は、超音波が対象物に当り、その反響を映像化するこ とで得られる。すなわち、チーズの内部を直進した超 音波は異なった物体や空間等との境界面で反射し画像 として捉えられる。これらの空隙や異物等が存在せず にチーズ組織が均一な場合には、Fig 1, A (ゴーダタ イプチーズ、3ヶ月熟成)に示したように、チーズの

- Fig. 1 Comparison of the ultrasonic images of the internal structure of cheese to their sliced sections
- \rightarrow : reflection image of cheese bottom
- A : homogeneous internal structure(Gouda-type cheese ripening 3 month)
- B: thickly rinded (Gouda-type cheese ripening 3 month)
- C :normal gas holes(Gouda-type cheese ripening 3 month)
- D:mechanical holes(Gouda-type cheese ripening 3 month)
- E : horizontal crack(Gouda-type cheese ripening 3 month)
- F : vertical crack(Swiss-type cheese ripening 2 month)
- G : abnormal gas holes by butyric acid fermentation (Gouda-type cheese ripening 2 month)

測定側(画像上部の白色帯)の反対表面(画像下部の 白線)の反射像が得られた。しかし、チーズ表面に高 度に乾燥した組織(リンド)が発達し、その厚さが約 4 mm程度となったものでは超音波がチーズ内部に侵 入できないため内部構造および反対側境界面からの反 射像は認められなかった。

チーズ内部に超音波が侵入でき何らかの空間がある 場合は反射像が確認できた。すなわち、ガスホールの 場合は三日月状の反射像が観察され(Fig. 1 C:ゴー ダタイプチーズ 3ヶ月熟成)、メカニカルホールの場 合は不定形で不均一な大きさの反射像が確認された (Fig. 1 D:ゴーダタイプチーズ 3ヶ月熟成)。超 音波の出射方向に対して直交する方向にクラックがあ る場合は筋状の反射像が観察された(Fig. 1 E:スイ スタイプチーズ 2ヶ月熟成)。しかし、これに対して 出射方向と同方向の縦のクラックがある場合はメカニ カルホールと類似する反射像として観察されたがク ラックとメカニカルホールとの識別は困難であった (Fig. 1 F:ゴーダタイプチーズ 3ヶ月熟成)。

酪酸発酵チーズでは、表面に近いガスホールの反射 像が明瞭に認められたが、その下部のガスホールにつ いては確認できないものもあった。これは酪酸発酵の ガスホールが通常のガスホールに比べ大きく、表層の ガスホールによって超音波が反射されるためと考えら れた。これは、この酪酸発酵チーズの裏表面からの境 界面からの反射像が確認できなかったことからも推察 される(Fig. 1 G:ゴーダタイプチーズ 2ヶ月熟 成)。

このように直進した超音波は異なった物体や空間と の境界面で反射する性質を持っているためチーズ内部 に数多くのガスホールやメカニカルホール、横に長い クラックがある場合は、それらより下部にある内部構 造の検出が困難となるが、これは超音波の出射方向を 変えて総合的に判断することで検出できる場合が多 い。このように人体に無害と考えられている超音波を 利用して、チーズ製造時に完全に回避し得ないメカニ カルホールなどのチーズの品質を著しく低下させる要 因を、非破壊的に確認し、その後の製造過程における 合理的な管理について検討することが可能と考えられ る。

チーズ等の内部構造の非破壊的測定法には、CTス キャンやMRIを用いる方法もあり、超音波画像診断装 置での欠点は、これらの機器で克服し得るが、これら の機器は、今回用いた超音波画像診断装置と比較して 放射線の使用や機器が高額なために、食品への応用に ついては、現段階では、その可能性はほとんどない。超 音波画像診断装置は、維持、撮像経費が廉価なことや 装置自体の移動が可能なことなどから小中規模のチー ズ工房においても導入が可能と考えられる。

ゴーダタイプのチーズでは酪酸発酵による膨張にと もない、酪酸臭や不潔臭などの欠陥風味を生じ商品価 値を著しく損ねることが問題となっている(中澤と細 野、1998)。今回、示したように、超音波画像診断装置 を用いることによって、酪酸菌による異常発酵チーズ と推定される製品の早期発見や改善策を迅速に行い、 損害を軽減することも可能であると考えられる。

Fig. 2 Ultrasonic images of films of different kinds and thickness used in vacuum packing cheese

- \leftarrow : horizontal reflection image
- A : control image(no film ,no vacuum packing)
- B : high density polyethylene resin $(12 \,\mu \,\mathrm{m})$
- C : poly vinylidene chloride resin $(20 \,\mu \,\mathrm{m})$
- D : low density polyethylene resin $(30 \,\mu \text{ m})$
- E: low density polyethylene resin + nylon resin layer (70 μ m)
- F : nylon poly resin layer + nylon resin layer (80 μ m)

真空包装用フィルムが超音波画像に及ぼす影響

真空包装用フィルムの材質・構造・厚さの違いが画 像に及ぼす影響について検討した結果をFig. 2 に示 す。真空包装に使用したチーズはガスホールが認めら れたゴーダタイプチーズである。超音波画像の上部に 真空包装用フィルムに起因する板状の水平方向の反射 像が認められ、この水平反射像はフィルムの膜厚が大 きくなるほど厚さが増加した。しかし、今回用いた フィルムの材質、構造および厚さは、チーズ内部の構 造に起因する反射像に影響を及ぼさなかった (Fig. 2)。

近年、チーズ表面のリンド形成を防ぎ、さらに微生 物の発育を抑える目的で熱収縮フィルム等の各種合成 樹脂の袋を用いて真空包装することが普及している

(蔵王酪農センター、1996、1997)が、これらの包装 資材が超音波画像診断装置を用いたチーズ内部組織の 観察の阻害要因にはならないと考えられた。しかし、 チーズ表面と真空包装用フィルムの間に空気が存在す る状態では、超音波がそこで反射しチーズ内部を観察 できないことも考えられる。そのため、超音波画像装 置を用いて真空包装されたチーズを観察する場合は、 チーズと真空包装フィルムを密着させることが重要で ある。

チーズ熟成過程における内部構造の経日的観察

硬質のスイスタイプチーズを製造し、熟成過程で生 じる空隙について経日的に画像観察し、あわせて熟成 完了時のチーズ断面と比較した。熟成0日目では、均 質な内部構造を反映して特異的な超音波の反射像は得 られなかった(Fig.3A)。しかし、11日目ではガスホー ルに由来する三日月像が観察され(Fig.3B-1)、25日 目(Fig.3D-1)にはその容積の拡大が推定された。ま た、このガスホール以外の部分で18日目にクラックと 推定される薄い筋状の像が観察され(Fig.3C-2)、25 日目にはさらに明確となった(Fig.3D-2)。

伝統的なスイスタイプチーズは山間部の保存食料と

して発展したこともあり、60~130kg と大き く保存期間が3ヶ月から1年と長い(中澤と細 野、1998)。スイスタイプチーズのエメンター ルやグリュイエールの水分は35.2%、36.3% と報告されている(中澤と細野、1998)。今回、 供試した1kg玉の小型スイスタイプチーズは、 高温熟成0日目でガスホール、メカニカルホー ル、クラックのない均質な組織であったにも かかわらず、その後にクラックが形成され た。このようにクラックが生じた原因は、乾 燥0日目のチーズ内部の水分含量は40.8% であったが低温熟成6ヶ月目のチーズ内部 およびリンドの水分が、それぞれ30.9%、 24.6%と著しく低下しており、小型で真空包

- Fig. 3 High temperature(30°C) ripening process of Swiss-type cheese
- A : high temperature ripening at 0th day
- B: high temperature ripening at 11th day
- C: high temperature ripening at 18th day
- D: high temperature ripening at 25th day
- E: high temperature ripening at 25th day and low temperature (12°C) ripening at 6 month
- 1 ; gas hole formation process
- 2; crack formation process

装をしていなかったために熟成中の乾燥によりチーズ 内部組織の柔軟性や水分の不足を生じたためと推察さ れた。この結果から、プロピオン酸菌を接種する小型 スイスタイプチーズを製造する場合は、熟成中での チーズ内部の水分保持など製造上の問題に配慮する必 要があると考えられた。

今回示したように、チーズ内部の状態を把握することや、新たな熟成型チーズの製造法を検討する際には、

超音波画像診断装置から得られる画像を精査すること によって、不良品の早期発見やチーズ熟成の効率的な 工程管理などが可能となり、品質管理や新製品の開発 期間の短縮などに寄与するものと考えられた。

謝 辞

本研究の一部は、文部科学省都市エリア産学官連携 促進事業(+勝エリア)の共同研究として実施された。 遂行にあたり財団法人+勝圏振興機構食品加工技術セ ンター葛西大介主任研究員にご協力いただいた。チー ズ製造ならびに本論文の執筆にあたり中標津町畜産食 品加工研修センター河口理主幹、Ms OLIVIA L.KAWAGUCHIにご助言いただいた。これらの諸氏 に感謝の意を表します。

参考文献

藤野成爾・坂本崇(2007) C.P.Aチーズプロフェッ ショナル教本2007. 44-47. 飛鳥出版. 東京都

中澤勇二・細野明義(1998) 新説チーズ科学. 93、 100、103、112-113、215-219 . 食品資材研究会. 東 京都

齋藤忠夫・西村敏英・松田幹(2006) 最新畜産物利 用学. 66. 朝倉書店. 東京都

蔵王酪農センター編(1996) ナチュラルチーズ製造 技術マニュアル 6集 41. 蔵王酪農センター. 宮城県

蔵王酪農センター編(1997) ナチュラルチーズ製造 技術マニュアル 7集 15. 蔵王酪農センター. 宮城県 i.